کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4375230 | 1303252 | 2009 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Use of different approaches to model presence/absence of Salmo marmoratus in Piedmont (Northwestern Italy)
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم کشاورزی و بیولوژیک
بوم شناسی، تکامل، رفتار و سامانه شناسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In Piedmont (Italy) the environmental changes due to human impact have had profound effects on rivers and their inhabitants. Thus, it is necessary to develop practical tools providing accurate ecological assessments of river and species conditions. We focus our attention on Salmo marmoratus, an endangered salmonid which is characteristic of the Po river system in Italy. In order to contribute to the management of the species, four different approaches were used to assess its presence: discriminant function analysis, logistic regression, decision tree models and artificial neural networks. Either all the 20 environmental variables measured in the field or the 7 coming from feature selection were used to classify sites as positive or negative for S. marmoratus. The performances of the different models were compared. Discriminant function analysis, logistic regression, and decision tree models (unpruned and pruned) had relatively high percentages of correctly classified instances. Although neither tree-pruning technique improved the reliability of the models significantly, they did reduce the tree complexity and hence increased the clarity of the models. The artificial neural network (ANN) approach, especially the model built with the 7 inputs coming from feature selection, showed better performance than all the others. The relative contribution of each independent variable to this model was determined by using the sensitivity analysis technique. Our findings proved that the ANNs were more effective than the other classification techniques. Moreover, ANNs achieved their high potentials when they were applied in models used to make decisions regarding river and conservation management.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ecological Informatics - Volume 4, Issue 4, September 2009, Pages 234-242
Journal: Ecological Informatics - Volume 4, Issue 4, September 2009, Pages 234-242
نویسندگان
Tina Tirelli, Luca Pozzi, Daniela Pessani,