کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
437606 690164 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Tighter upper bound for sorting permutations with prefix transpositions
ترجمه فارسی عنوان
بدست آوردن قاعده تنگ تر برای مرتب کردن تعویض ها با انتقال پیشوندها
کلمات کلیدی
نمودارهای کایلی، تغییرات مرتب سازی، پیشوند پیشنهادی، قطر، کران بالا
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی

Permutations are sequences where each symbol in the given alphabet Σ appears exactly once. A transposition is an operation that exchanges two adjacent sublists in a permutation; if one of these sublists is restricted to be a prefix then one obtains a prefix transposition. Transpositions over permutations have applications in genome rearrangements and computer interconnection networks. The set of permutations with n   symbols derived from the alphabet Σ={0,1,…,n−1}Σ={0,1,…,n−1} form a symmetric group, that we denote by PnPn. The prefix transposition distance between two permutations π⁎∈Pnπ⁎∈Pn and π∼∈Pnπ∼∈Pn is the minimum number of prefix transpositions, also called moves  , needed to transform π⁎π⁎ into π∼π∼. A prefix transposition can be modeled by a permutation operation. A permutation is type of sequence and it is also an operation. The generators for prefix transposition operation are a subset of permutation operation. As a result, transforming an arbitrary π⁎∈Pnπ⁎∈Pn to an arbitrary π∼∈Pnπ∼∈Pn is equivalent to sorting some πˆ∈Pn. Thus, upper bound for transforming any π⁎∈Pnπ⁎∈Pn into any π∼∈Pnπ∼∈Pn with prefix transpositions is simply the upper bound to sort any permutation π∈Pnπ∈Pn with moves. In the article that establishes the best known upper bound for prefix transposition distance over PnPn as n−log9/2⁡nn−log9/2⁡n, explicit proofs were not given for some cases. In this article, we provide the missing proofs, validating the stated upper bound. Furthermore, we establish an upper bound of n−log7/2⁡nn−log7/2⁡n for prefix transposition distance over PnPn.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Theoretical Computer Science - Volume 602, 18 October 2015, Pages 22–31
نویسندگان
,