کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4401830 1618616 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Artificial Neural Network Modeling to Predict Biodiesel Production in Supercritical Methanol and Ethanol Using Spiral Reactor
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست بوم شناسی
پیش نمایش صفحه اول مقاله
Artificial Neural Network Modeling to Predict Biodiesel Production in Supercritical Methanol and Ethanol Using Spiral Reactor
چکیده انگلیسی

Non-catalytic biodiesel production in supercritical methanol (SCM) and supercritical ethanol (SCE) was conducted using spiral reactor. The experimental data were used to create artificial neural network (ANN) model in order to predict biodiesel yield. The results showed that ANN was the powerful tool to estimate biodiesel yield that was proven by a high value (0.9980 and 0.9987 in SCM and SCE, respectively) of R and a low value (2.72×10-5, 1.68×10-3, and 2.30×10-3 in SCM and 2.24×10-4, 4.49×10-4, and 5.03×10-4 in SCE for training, validation, and testing, respectively) of mean squared error (MSE). For biodiesel production in SCM, the highest yield of biodiesel was determined of 1.01 mol/mol corresponding to the actual biodiesel yield of 1.00 mol/mol achieved at 350 °C, 20 MPa within 10 min; whereas, for SCE, the highest yield of biodiesel was observed of 0.97 mol/mol corresponding to the actual biodiesel yield of 0.96 mol/mol achieved at 400 °C, 20 MPa within 25 min.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Environmental Sciences - Volume 28, 2015, Pages 214-223