کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4402030 1618618 2015 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Functional PCA for Remotely Sensed Lake Surface Water Temperature Data
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست بوم شناسی
پیش نمایش صفحه اول مقاله
Functional PCA for Remotely Sensed Lake Surface Water Temperature Data
چکیده انگلیسی

Functional principal component analysis is used to investigate a high-dimensional surface water temperature data set of Lake Victoria, which has been produced in the ARC-Lake project. Two different perspectives are adopted in the analysis: modelling temperature curves (univariate functions) and temperature surfaces (bivariate functions). The latter proves to be a better approach in the sense of both dimension reduction and pattern detection. Computational details and some results from an application to Lake Victoria data are presented.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Environmental Sciences - Volume 26, 2015, Pages 127-130