کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4402081 1618617 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cross-Validation Estimations of Hyper-Parameters of Gaussian Processes with Inequality Constraints
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست بوم شناسی
پیش نمایش صفحه اول مقاله
Cross-Validation Estimations of Hyper-Parameters of Gaussian Processes with Inequality Constraints
چکیده انگلیسی

In many situations physical systems may be known to satisfy inequality constraints with respect to some or all input parameters. When building a surrogate model of this system (like in the framework of computer experiments7), one should integrate such expert knowledge inside the emulator structure. We proposed a new methodology to incorporate both equality conditions and inequality constraints into a Gaussian process emulator such that all conditional simulations satisfy the inequality constraints in the whole domain6. An estimator called mode (maximum a posteriori) is calculated and satisfies the inequality constraints.Herein we focus on the estimation of covariance hyper-parameters and cross validation methods1. We prove that these methods are suited to inequality constraints. Applied to real data in two dimensions, the numerical results show that the Leave-One-Out mean square error criterion using the mode is more efficient than the usual (unconstrained) Kriging mean.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Environmental Sciences - Volume 27, 2015, Pages 38-44