کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4404001 1618634 2011 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
LogP Prediction for Blocked Tripeptides with Amino Acids Descriptors (HMLP) by Multiple Linear Regression and Support Vector Regression
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست بوم شناسی
پیش نمایش صفحه اول مقاله
LogP Prediction for Blocked Tripeptides with Amino Acids Descriptors (HMLP) by Multiple Linear Regression and Support Vector Regression
چکیده انگلیسی

The hydrophilicity/ lipophilicity of peptides are very important for rational design and drug discovery of bioactive peptides. In this study, each amino acid side chain was characterized by using three structure parameters (heuristic molecular lipophilicity potential, HMLP). Based on HMLP descriptors, prediction QSAR models of the logP were constructed for blocked tripeptides by multiple linear regression (MLR) and support vector regression (SVR). All the results showed that the logP relates to the total surface area(S) and hydrophilic indices (H), and the prediction results of SVR are better than that of MLR. The result shows HMLP parameters (S, L, H) could preferably describe the structure features of the peptides responsible for their octanol to water partition behavior.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Procedia Environmental Sciences - Volume 8, 2011, Pages 173-178