کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4406952 | 1307333 | 2014 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Isotope geochemistry of Swan Lake Basin in the Nebraska Sandhills, USA: Large 13C enrichment in sediment-calcite records
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This study presents isotope geochemical analyses conducted on water column samples and core sediments collected from the Swan Lake Basin. Water analyses include the dissolved methane (CH4) content and the ratio of carbon-13 to carbon-12 (δ13C) in dissolved inorganic carbon (DIC). The core sediments - sandy muds containing inorganic calcite, organic matter, and opal phases ± ostracods - were examined by X-ray diffraction, dated by radiocarbon (14C), analyzed for wt% organic carbon, wt% organic nitrogen, wt% organic matter, wt% calcite, δ13C of bulk-sediment insoluble organic matter (kerogen), 18O:16O ratio (δ18O) and δ13C of bulk and ostracod calcite. Of particular significance is the large enrichment in carbon-13 (δ13C = +4.5 to +20.4ⰠV-PDB) in the calcite of these sediments. The 13C-enriched calcite is primarily formed from DIC in the water column of the lake as a result of the following combined processes: (i) the incorporation of 13C enriched residual carbon dioxide (CO2) after partial reduction to CH4 in the sediments and its migration into the water column-DIC pool; (ii) the preferential assimilation of 12C by phytoplankton during photosynthesis; (iii) the removal of 13C-depleted CH4 by ebullition and of organic matter by sedimentation and burial. The 13C enrichment was low between 3624 and 2470 yr BP; high between 2470 and 1299 yr BP; and moderate since 1299 yr BP. Low 13C enrichment was formed under low water-column carbon levels while higher ones were formed under elevated rates of biomass and calcite deposition. These associations seem to imply that biological productivity is the main reason for carbon-13 enrichments.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemie der Erde - Geochemistry - Volume 74, Issue 4, December 2014, Pages 681-690
Journal: Chemie der Erde - Geochemistry - Volume 74, Issue 4, December 2014, Pages 681-690
نویسندگان
Kamaleldin M. Hassan,