کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4419254 1618934 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Assessment of metal toxicity and bioavailability in metallophyte leaf litters and metalliferous soils using Eisenia fetida in a microcosm study
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست شیمی زیست محیطی
پیش نمایش صفحه اول مقاله
Assessment of metal toxicity and bioavailability in metallophyte leaf litters and metalliferous soils using Eisenia fetida in a microcosm study
چکیده انگلیسی


• Metal bioavailability in metallophyte leaf litter and copper mine soil was assessed.
• Mine leaf litter and mine soil were toxic to earthworm survival and reproduction.
• Bioavailability of metals from mine soils was dependent on their water-soluble fraction.
• Metal accumulation in worm was directly proportional to the concentration of metals.
• Earthworm plays a significant role in the transfer of metals from mine site.

The leaf litters of tree species, Acacia pycnantha (Ap) and Eucalyptus camaldulensis (Ec), predominantly growing at an abandoned copper (Cu) mine and mine soils including controls, were assessed for determining the metal toxicity and bioavailability using earthworm species Eisenia fetida, in a microcosm. Significant reduction in body weight as well as mortality were observed when the worms were introduced into mine soil or its combination with mine Ap litter. Virtually, there were no juveniles when the worms were fed on substratum that contained mine soil or mine leaf litter. The extent of bioaccumulation was dependent on water-soluble fraction of a metal in soil. The accumulation of cadmium, lead and copper in worm tissue was significantly more in treatments that received mine soil with or without mine leaf litter. However, the tissue concentration of zinc did not differ much in earthworms irrespective of its exposure to control or contaminated samples. Mine leaf litter from Ec, a known Cu hyperaccumulator, was more hospitable to earthworm survival and juvenile than that of Ap litter. Validation of the data on bioaccumulation of metals indicated that the mine leaf litter significantly contributed to metal bioavailability. However, it was primarily the metal concentration in mine soil that was responsible for earthworm toxicity and bioavailability. Our data also indicate that detrivores like earthworm is greatly responsible for heavy metal transfer from mines into the ecosystem.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ecotoxicology and Environmental Safety - Volume 129, July 2016, Pages 264–272
نویسندگان
, , , , , ,