کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4420106 1618955 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Optimal descriptor as a translator of eclectic information into the prediction of membrane damage: The case of a group of ZnO and TiO2 nanoparticles
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست شیمی زیست محیطی
پیش نمایش صفحه اول مقاله
Optimal descriptor as a translator of eclectic information into the prediction of membrane damage: The case of a group of ZnO and TiO2 nanoparticles
چکیده انگلیسی


• Nanoparticles (NPs) are represented by codes of physicochemical features.
• Two kinds of NPs are examined TiO2 and ZnO.
• Optimal descriptors were used to build up a predictive model for membrane damage.
• The optimal descriptor is a mathematical function of physicochemical NPs features.
• The statistical quality of the model is quite good.

The development of quantitative structure—activity relationships for nanomaterials needs representation of molecular structure of extremely complex molecular systems. Obviously, various characteristics of nanomaterial could impact associated biochemical endpoints. Following features of TiO2 and ZnO nanoparticles (n=42) are considered here: (i) engineered size (nm); (ii) size in water suspension (nm); (iii) size in phosphate buffered saline (PBS, nm); (iv) concentration (mg/L); and (v) zeta potential (mV). The damage to cellular membranes (units/L) is selected as an endpoint. Quantitative features—activity relationships (QFARs) are calculated by the Monte Carlo technique for three distributions of data representing values associated with membrane damage into the training and validation sets. The obtained models are characterized by the following average statistics: 0.78

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ecotoxicology and Environmental Safety - Volume 108, October 2014, Pages 203–209
نویسندگان
, , , , , ,