کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4438668 | 1620409 | 2012 | 8 صفحه PDF | دانلود رایگان |

Size fractionated airborne particle samples were collected from the top of the BT Tower and a ground-based site in Regents Park in London by deploying MOUDI instruments at the two locations. Particles were examined by Transmission Electron Microscope (TEM), Energy Dispersive X-Ray Analysis (EDX) and selected area electron diffraction patterns to determine the morphology, crystallinity and composition of individual particles in aggregated and non-aggregated forms. Eight different types of particles were observed which were common both to the ground-based location and some 160 m above the conurbation of London at the top of the BT Tower. Of these different types, amorphous carbonaceous aggregates (soot-like) containing C and O and often extending to the inclusion of Ca, K and Fe were the most common type of particles that occurred across all stages of the impactors but were most common in the fractions <1.2 μm. Other types of particles included beam-sensitive sulphur-rich particles containing Na and Cl that were present in crystalline and amorphous forms. Iron and titanium were common elements in other types of particles. Concurrent ATOFMS measurements were taken at the Regents Park site and 13 particle types were found. An intercomparison of the two techniques found three types of particle (out of eight) identified by the TEM, which had analogues (but not direct equivalents) in the ATOFMS clusters. Many of the particle types identified by the ATOFMS are vacuum-volatile (e.g. nitrates) and are therefore not seen by the TEM. The relative strengths and weaknesses of the two techniques are considered and it is concluded that both have major weaknesses but that they tend to complement one another.
► Size-fractionated particles were collected at BT Tower and Regents Park, London.
► Characterization of particles was by TEM (EDX) and ATOFMS in real-time.
► TEM identified 8 types common to both sites with soot-like particles predominating.
► ATOFMS identified 13 types at Regents Park but only 3 were common to the 8 by TEM.
► TEM fails to identify semi-volatiles but traces involatile particles effectively.
Journal: Atmospheric Environment - Volume 62, December 2012, Pages 400–407