کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
444020 692846 2015 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bayesian principal geodesic analysis for estimating intrinsic diffeomorphic image variability
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر گرافیک کامپیوتری و طراحی به کمک کامپیوتر
پیش نمایش صفحه اول مقاله
Bayesian principal geodesic analysis for estimating intrinsic diffeomorphic image variability
چکیده انگلیسی


• A generative Bayesian model of principal geodesic analysis in diffeomorphic image registration.
• Automatically selects an optimal number of dimensions of diffeomorphisms.
• A compact representation of shape for further statistical analysis.
• Higher reconstruction accuracy of unobserved test images than previous methods.

In this paper, we present a generative Bayesian approach for estimating the low-dimensional latent space of diffeomorphic shape variability in a population of images. We develop a latent variable model for principal geodesic analysis (PGA) that provides a probabilistic framework for factor analysis in the space of diffeomorphisms. A sparsity prior in the model results in automatic selection of the number of relevant dimensions by driving unnecessary principal geodesics to zero. To infer model parameters, including the image atlas, principal geodesic deformations, and the effective dimensionality, we introduce an expectation maximization (EM) algorithm. We evaluate our proposed model on 2D synthetic data and the 3D OASIS brain database of magnetic resonance images, and show that the automatically selected latent dimensions from our model are able to reconstruct unobserved testing images with lower error than both linear principal component analysis (LPCA) in the image space and tangent space principal component analysis (TPCA) in the diffeomorphism space.

Figure optionsDownload high-quality image (170 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Medical Image Analysis - Volume 25, Issue 1, October 2015, Pages 37–44
نویسندگان
, ,