کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4440345 1311056 2011 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Exploratory study on the pyrolysis and PAH emissions of polylactic acid
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علم هواشناسی
پیش نمایش صفحه اول مقاله
Exploratory study on the pyrolysis and PAH emissions of polylactic acid
چکیده انگلیسی

The emission factors for 16 U.S. EPA priority polycyclic aromatic hydrocarbons (PAHs) from the polylactic acid (PLA) pyrolysis and the decomposition mechanism were investigated in this study. The fragments and gas compositions using on-line thermogravimetry-mass spectrometry (TG-MS) were determined. A temperature series of 7 fragments was analyzed in helium, and was found to include: m/z = 16, which may represent methane; 28, which may be carbon monoxide; 44, which may be acetaldehyde; 56, which may be methylketene, 144, which may be oligomers of lactide. In addition, there are little amount of 100, and 200 which are oligomers of lactides observed in the pyrolysis of PLA. The pyrolysis of PLA is a non-radical, backbiting ester interchange reaction involving the OH chain ends. Depending on the size of the cyclic transition state, the product can be a lactide molecule, an oligomeric ring with more than two repeat units, methylketene, or acetaldehyde. Carbon monoxide and methane are contributions from the decomposition of acetaldehyde.Experimentally, not detected (n.d.)-40.47 μg of 16 PAH emissions were determined from per gram of PLA pyrolysis. The PAH profiles showed a predominance of naphthalene (58.9%), phenanthrene (12.5%), and fluoranthene (5.9%). The total PAH emissions for PLA pyrolysis is significantly lower than the values associated with PLA combustion. From the viewpoint of air pollution control, this result suggests that pyrolysis seems a better alternative than combustion for the disposal of waste PLA. Also, since pyrolysis is the first step for an incineration process, these results can provide important information on the control of PAHs formation for a commercialized incinerator.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Atmospheric Environment - Volume 45, Issue 1, January 2011, Pages 123–127
نویسندگان
, , ,