کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
444046 692862 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Large deformation diffeomorphic registration of diffusion-weighted imaging data
ترجمه فارسی عنوان
ثبت دگرگونی تغییر شکل بزرگ تصاویر تصویربرداری با توجه به انتشار
کلمات کلیدی
ریزمورفیسم، تصویربرداری با وزن مخصوص، ثبت نام تصویر، تغییر جهت مشخصات سیگنال، بهینه سازی جهت گیری صریح
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر گرافیک کامپیوتری و طراحی به کمک کامپیوتر
چکیده انگلیسی


• We present a non-rigid diffeomorphic registration method for diffusion-weighted imaging (DWI) data under large deformation.
• This is achieved by incorporating a DWI data reorientation technique into an LDDMM algorithm.
• This is the first work for direct DWI registration by simultaneously optimizing structural alignment and fiber orientation.
• Our method outperforms two state-of-the-art techniques in terms of white matter matching accuracy on a set of in vivo data.

Registration plays an important role in group analysis of diffusion-weighted imaging (DWI) data. It can be used to build a reference anatomy for investigating structural variation or tracking changes in white matter. Unlike traditional scalar image registration where spatial alignment is the only focus, registration of DWI data requires both spatial alignment of structures and reorientation of local signal profiles. As such, DWI registration is much more complex and challenging than scalar image registration. Although a variety of algorithms has been proposed to tackle the problem, most of them are restricted by the diffusion model used for registration, making it difficult to fit to the registered data a different model. In this paper we describe a method that allows any diffusion model to be fitted after registration for subsequent multifaceted analysis. This is achieved by directly aligning DWI data using a large deformation diffeomorphic registration framework. Our algorithm seeks the optimal coordinate mapping by simultaneously considering structural alignment, local signal profile reorientation, and deformation regularization. Our algorithm also incorporates a multi-kernel strategy to concurrently register anatomical structures at different scales. We demonstrate the efficacy of our approach using in vivo data and report detailed qualitative and quantitative results in comparison with several different registration strategies.

Graphical AbstractFigure optionsDownload high-quality image (183 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Medical Image Analysis - Volume 18, Issue 8, December 2014, Pages 1290–1298
نویسندگان
, , , ,