کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4441020 1311088 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improving ozone modeling in complex terrain at a fine grid resolution – Part II: Influence of schemes in MM5 on daily maximum 8-h ozone concentrations and RRFs (Relative Reduction Factors) for SIPs in the non-attainment areas
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علم هواشناسی
پیش نمایش صفحه اول مقاله
Improving ozone modeling in complex terrain at a fine grid resolution – Part II: Influence of schemes in MM5 on daily maximum 8-h ozone concentrations and RRFs (Relative Reduction Factors) for SIPs in the non-attainment areas
چکیده انگلیسی

Part II presents a comprehensive evaluation of CMAQ for August of 2002 on twenty-one sensitivity simulations (detailed in Part I) in MM5 to investigate the model performance for O3 SIPs (State Implementation Plans) in the complex terrain. CMAQ performance was quite consistent with the results of MM5, meaning that accurate meteorological fields predicted in MM5 as an input resulted in good model performance of CMAQ. In this study, PBL scheme plays a more important role than its land surface models (LSMs) for the model performance of CMAQ. Our results have shown that the outputs of CMAQ on eighteen sensitivity simulations using two different nudging coefficients for winds (2.5 and 4.5 × 10−4 s−1, respectively) tend to under predict daily maximum 8-h ozone concentrations at valley areas except the TKE PBL sensitivity simulations (ETA M-Y PBL scheme with Noah LSMs and 5-layer soil model and Gayno-Seaman PBL) using 6.0 × 10−4 s−1 with positive MB (Mean Bias). At mountain areas, none of the sensitivity simulations has presented over predictions for 8-h O3, due to relatively poor meteorological model performance. When comparing 12-km and 4-km grid resolutions for the PX simulation in CMAQ statistics analysis, the CMAQ results at 12-km grid resolution consistently show under predictions of 8-h O3 at both of valley and mountain areas and particularly, it shows relatively poor model performance with a 15.1% of NMB (Normalized Mean Bias). Based on our sensitivity simulations, the TKE PBL sensitivity simulations using a maximum value (6 × 10−4) among other sensitivity simulations yielded better model performance of CMAQ at all areas in the complex terrain. As a result, the sensitivity of RRFs to the PBL scheme may be considerably significant with about 1–3 ppb in difference in determining whether the attainment test is passed or failed. Furthermore, we found that the result of CMAQ model performance depending on meteorological variations is affected on estimating RRFs for attainment demonstration, indicating that it is necessary to improve model performance. Overall, G_c (Gayo-Seaman PBL scheme) using the coefficient for winds, 6 × 10−4 s−1, sensitivity simulation predicts daily maximum 8-h ozone concentration closer to observations during a typical summer period from May to September and provides generally low future design values (DVFs) at valley and mountain areas compared to other simulations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Atmospheric Environment - Volume 44, Issue 17, June 2010, Pages 2116–2124
نویسندگان
, , ,