کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4443147 1311180 2007 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Impact of building facades and ground heating on wind flow and pollutant transport in street canyons
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علم هواشناسی
پیش نمایش صفحه اول مقاله
Impact of building facades and ground heating on wind flow and pollutant transport in street canyons
چکیده انگلیسی

This paper investigates the impacts of building facades and ground heating on the wind flow and pollutant transport in street canyons using the computational fluid dynamic (CFD) technique. Street canyons of H/W (H representing the building height and W the street width) varied from 0.1 to 2, which covered the basic flow regimes of skimming flow (H/W=1 or 2), wake interference flow (H/W=0.5), and isolated roughness flow (H/W=0.1), were examined in a series of sensitivity tests. Heating that occurred on different surfaces, including ground surface and building façades, posed considerable effects on the street canyon wind flow and pollutant transport compared with those under isothermal conditions. The CFD results showed that the mechanically induced wind flow and pollutant transport were complicated by the buoyancy under temperature stratification. Individual street canyons of different H/W and surface-heating scenarios exhibited their unique wind flow structure and pollutant transport behaviors. Two counter-rotating vortices were calculated in the street canyons of H/W=1, in which the zone of higher pollutant concentration under isothermal conditions was switched from the leeward side to the windward side. In the street canyon of H/W=2, the recirculating wind pattern was perturbed by surface heating that led to the development of either one primary vortex or three closely coupled vortices. Because of the complicated wind structure, the zones of higher pollutant concentration located either on the leeward or windward ground level were subjected to the surface-heating scenarios. Only two vortices were developed inside the street canyon of H/W=0.5. The large primary vortex, centered inside the street canyon, extended above the roof level of the street canyon. Meanwhile, a small secondary vortex was found at the ground-level windward corner whose size results as a function of surface-heating configurations. Finally, in the street canyon of H/W=0.1, an isolated clockwise-rotating vortex was developed beside the leeward building while the wind in the windward side blew in the prevailing wind direction. As a result, air pollutant emitted at the street centerline was unlikely to be carried into the leeward vortex. Instead, it was dispersed rapidly on the windward side before being removed from the street canyon.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Atmospheric Environment - Volume 41, Issue 39, December 2007, Pages 9030–9049
نویسندگان
, , ,