کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
444325 692967 2012 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Exploring the structure determinants of pyrazinone derivatives as PDE5 3HC8 inhibitors: An in silico analysis
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی تئوریک و عملی
پیش نمایش صفحه اول مقاله
Exploring the structure determinants of pyrazinone derivatives as PDE5 3HC8 inhibitors: An in silico analysis
چکیده انگلیسی

Phosphodiesterase type 5 (PDE5) inhibitors are clinically indicated for the treatment of erectile dysfunction, pulmonary hypertension and various other diseases. In this work, both ligand- and receptor-based three-dimensional quantitative structure–activity relationship (3D-QSAR) studies were carried out using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques on 122 pyrazinone derivatives as PDE inhibitors. The resultant optimum 3D-QSAR model exhibits a proper predictive ability as indicated by the statistical results of Q2 of 0.584, Rncv2 of 0.884 and Rpre2 of 0.817, respectively. In addition, docking analysis and molecular dynamics (MD) simulation were also applied to elucidate the probable binding modes of these inhibitors. Our main findings are: (1) Introduction of bulky, electropositive and hydrophobic substituents at 12- and 19-positions can increase the biological activities. (2) N atom at 8-position is detrimental to the inhibitor activity, and the effect of N atoms at 5- and 6-positions on compound activity is co-determined by both the hydrophobic force and the π–π stacking interaction. (3) Bulky and hydrophilic substitutions are favored at the 27-position of ring D. (4) Electronegative and hydrophilic substitutions around 5- and 6-positions increase the inhibitory activity. (5) Hydrophobic forces and π–π stacking interaction with Phe786 and Phe820 are crucial in determining the binding of pyrazinone derivatives to PDE5. (6) Bulky substitutions around ring C favors selectivity against PDE11, while bulky groups near the 21-position disfavor the selectivity. The information obtained from this work can be utilized to accurately predict the binding affinity of related analogues and also facilitate future rational designs of novel PDE5 inhibitors with improved activity and selectivity.

Figure optionsDownload high-quality image (95 K)Download as PowerPoint slideHighlight
► 3D-QSAR was performed on 122 pyrazinone-based PDE5 inhibitors.
► Steric, electrostatic, hydrophobic and π-stacking forces are crucial for activity.
► The obtained results can help in the development of novel potent PDE5 inhibitors.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Molecular Graphics and Modelling - Volume 38, September 2012, Pages 112–122
نویسندگان
, , , , , , ,