کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
445046 693117 2016 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Deformable image registration by combining uncertainty estimates from supervoxel belief propagation
ترجمه فارسی عنوان
ثبت نام تصویر قابل تنظیم با ترکیب پیش بینی عدم اطمینان از انتشار باور عصبی
کلمات کلیدی
لایه های سوکسوکسل، پخش تقسیم بندی، برآورد حرکت، متوسط ​​شیب، ثبت نام احتمالاتی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر گرافیک کامپیوتری و طراحی به کمک کامپیوتر
چکیده انگلیسی


• We present a new representation of 3D medical scans by complementary layers of supervoxels.
• Efficient approximations of marginal distributions over a dense displacement space are obtained using belief propagation on a minimum-spanning-tree.
• Motion estimates found using mean-shift mode seeking based on displacement marginals yield low registration errors and quantitative measures of registration uncertainty.
• Voxelwise fusion of label proposals result in superior segmentation accuracy over state-of-the-art for LPBA40 data.

Discrete optimisation strategies have a number of advantages over their continuous counterparts for deformable registration of medical images. For example: it is not necessary to compute derivatives of the similarity term; dense sampling of the search space reduces the risk of becoming trapped in local optima; and (in principle) an optimum can be found without resorting to iterative coarse-to-fine warping strategies. However, the large complexity of high-dimensional medical data renders a direct voxel-wise estimation of deformation vectors impractical. For this reason, previous work on medical image registration using graphical models has largely relied on using a parameterised deformation model and on the use of iterative coarse-to-fine optimisation schemes. In this paper, we propose an approach that enables accurate voxel-wise deformable registration of high-resolution 3D images without the need for intermediate image warping or a multi-resolution scheme. This is achieved by representing the image domain as multiple comprehensive supervoxel layers and making use of the full marginal distribution of all probable displacement vectors after inferring regularity of the deformations using belief propagation. The optimisation acts on the coarse scale representation of supervoxels, which provides sufficient spatial context and is robust to noise in low contrast areas. Minimum spanning trees, which connect neighbouring supervoxels, are employed to model pair-wise deformation dependencies. The optimal displacement for each voxel is calculated by considering the probabilities for all displacements over all overlapping supervoxel graphs and subsequently seeking the mode of this distribution. We demonstrate the applicability of this concept for two challenging applications: first, for intra-patient motion estimation in lung CT scans; and second, for atlas-based segmentation propagation of MRI brain scans. For lung registration, the voxel-wise mode of displacements is found using the mean-shift algorithm, which enables us to determine continuous valued sub-voxel motion vectors. Finding the mode of brain segmentation labels is performed using a voxel-wise majority voting weighted by the displacement uncertainty estimates. Our experimental results show significant improvements in registration accuracy when using the additional information provided by the registration uncertainty estimates. The multi-layer approach enables fusion of multiple complementary proposals, extending the popular fusion approaches from multi-image registration to probabilistic one-to-one image registration.

Figure optionsDownload high-quality image (226 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Medical Image Analysis - Volume 27, January 2016, Pages 57–71
نویسندگان
, , , , ,