کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
447250 | 693413 | 2007 | 12 صفحه PDF | دانلود رایگان |

Wireless local area networks are becoming very popular in many scenarios because they are very simple, convenient and cheap. This paper focuses on multimedia traffic management in wireless networks, where we consider to provide differentiated Quality of Service (QoS) levels. We address the complex task of traffic scheduling with multi-objective requirements in the presence of errors introduced by the radio channel. In particular, we focus on managing downlink traffic in both wireless ATM and WiFi scenarios, referring to an infrastructure wireless access network where a central coordinator takes scheduling decisions for the mobile users in its cell. Our scheduler is based on an Artificial Neural Network (ANN) with reinforcement learning. The ANN is trained from examples to behave as an “optimal” scheduler, according to an Actor-Critic model. The results obtained in scheduling concomitant voice, video and Web traffic classes permit to show the significant capacity improvement that can be achieved by our scheme with respect to other techniques previously proposed in the literature.
Journal: Computer Communications - Volume 30, Issue 2, 15 January 2007, Pages 207–218