کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4495928 1623819 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Predicting Golgi-resident protein types using pseudo amino acid compositions: Approaches with positional specific physicochemical properties
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم کشاورزی و بیولوژیک (عمومی)
پیش نمایش صفحه اول مقاله
Predicting Golgi-resident protein types using pseudo amino acid compositions: Approaches with positional specific physicochemical properties
چکیده انگلیسی


• A novel protein sequence representation incorporating evolutionary information.
• A better form of pseudo-amino acid compositions.
• A minimal set of features to predict Golgi-resident protein types.

Knowing the type of a Golgi-resident protein is an important step in understanding its molecular functions as well as its role in biological processes. In this paper, we developed a novel computational method to predict Golgi-resident protein types using positional specific physicochemical properties and analysis of variance based feature selection methods. Our method achieved 86.9% prediction accuracy in leave-one-out cross-validations with only 59 features. Our method has the potential to be applied in predicting a wide range of protein attributes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Theoretical Biology - Volume 391, 21 February 2016, Pages 35–42
نویسندگان
, ,