کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4496089 1623848 2014 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A co-expression modules based gene selection for cancer recognition
ترجمه فارسی عنوان
انتخاب ژن بر اساس ماژول های همبستگی برای تشخیص سرطان
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم کشاورزی و بیولوژیک (عمومی)
چکیده انگلیسی

Gene expression profiles are used to recognize patient samples for cancer diagnosis and therapy. Gene selection is crucial to high recognition performance. In usual gene selection methods the genes are considered as independent individuals and the correlation among genes is not used efficiently. In this description, a co-expression modules based gene selection method for cancer recognition is proposed. First, in the cancer dataset a weighted correlation network is constructed according to the correlation between each pair of genes, different modules from this network are identified and the significant modules are selected for following exploration. Second, based on these informative modules information gain is applied to selecting the feature genes for cancer recognition. Then using LOOCV, the experiments with different classification algorithms are conducted and the results show that the proposed method makes better classification accuracy than traditional gene selection methods. At last, via gene ontology enrichment analysis the biological significance of the co-expressed genes in specific modules was verified.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Theoretical Biology - Volume 362, 7 December 2014, Pages 75–82
نویسندگان
, , , , ,