کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
450765 | 694150 | 2014 | 13 صفحه PDF | دانلود رایگان |
• Propose a bilingual approach for conducting social media sentiment analysis.
• Test the approach with movie reviews collected from online social network sites.
• Experiments show that the proposed approach is effective and has high accuracy.
Due to the advancement of technology and globalization, it has become much easier for people around the world to express their opinions through social media platforms. Harvesting opinions through sentiment analysis from people with different backgrounds and from different cultures via social media platforms can help modern organizations, including corporations and governments understand customers, make decisions, and develop strategies. However, multiple languages posted on many social media platforms make it difficult to perform a sentiment analysis with acceptable levels of accuracy and consistency. In this paper, we propose a bilingual approach to conducting sentiment analysis on both Chinese and English social media to obtain more objective and consistent opinions. Instead of processing English and Chinese comments separately, our approach treats review comments as a stream of text containing both Chinese and English words. That stream of text is then segmented by our segment model and trimmed by the stop word lists which include both Chinese and English words. The stem words are then processed into feature vectors and then applied with two exchangeable natural language models, SVM and N-Gram. Finally, we perform a case study, applying our proposed approach to analyzing movie reviews obtained from social media. Our experiment shows that our proposed approach has a high level of accuracy and is more effective than the existing learning-based approaches.
Journal: Computer Networks - Volume 75, Part B, 24 December 2014, Pages 491–503