کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4508330 1624397 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Agricultural products recognition system using taxonomist's knowledge as semantic attributes
ترجمه فارسی عنوان
سیستم شناسایی محصولات کشاورزی با استفاده از دانش تاکسونومی به عنوان ویژگی های معنایی
کلمات کلیدی
تولید سیستم تشخیص، ماشین بردار پشتیبانی، یادگیری متمایز، پردازش تصویر،
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم زراعت و اصلاح نباتات
چکیده انگلیسی
Support Vector Machine (SVM) was used to classify type of produce commonly sold in supermarkets. We applied a sequence of image processing algorithms such as conversion of color space, thresholding and morphological operation to obtain the region of interest from the images. Global and local features were extracted from the images and used as input for the classifiers. The color and texture features extracted in this system were L*a*b* values and texton approach respectively. Since attribute learning has emerged as a promising paradigm for assisting in object recognition, we proposed to integrate it into our system. This could tackle problem occurred when less training data are available, i.e. less than 20 samples per class. The performances of the proposed classifier and conventional SVM were also compared. The experiments showed that the classification accuracy of the proposed classifier is higher than conventional SVM by 7% when only 4 samples per class were trained.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering in Agriculture, Environment and Food - Volume 9, Issue 3, July 2016, Pages 224-234
نویسندگان
, ,