کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4508569 1321610 2011 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Determining an ANN pre-treatment algorithm to predict water content of moss using RGB intensities
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم زراعت و اصلاح نباتات
پیش نمایش صفحه اول مقاله
Determining an ANN pre-treatment algorithm to predict water content of moss using RGB intensities
چکیده انگلیسی
Sunagoke moss is one of the plant products that are cultivated in a plant factory. One of the primary determinants of moss growth is water availability. The present work attempts to apply precision irrigation system using machine vision in plant factories. The specific objective was to evaluate the ability of bio-inspired approaches as pre-treatment algorithm of Artificial Neural Network (ANN) for determining water content of moss. The results showed that ANN was capable for predicting water content of moss using RGB intensities, and then some bio-inspired approaches such as Honey Bees Mating Optimization (HBMO), Ant Colony Optimization (ACO), Genetic Algorithms (GAs), Simulated Annealing (SA) and Discrete Particle Swarm Optimization (DPSO) were capable of optimizing the feature selection process.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering in Agriculture, Environment and Food - Volume 4, Issue 4, 2011, Pages 95-105
نویسندگان
, ,