کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
450946 | 694212 | 2016 | 12 صفحه PDF | دانلود رایگان |
Most of the opportunistic scheduling algorithms in literature assume that full wireless channel state information (CSI) is available for the scheduler. However, in practice obtaining full CSI may introduce a significant overhead. In this paper, we present a learning-based scheduling algorithm which operates with partial CSI under general wireless channel conditions. The proposed algorithm predicts the instantaneous channel rates by employing a Bayesian approach and using Gaussian process regression. It quantifies the uncertainty in the predictions by adopting an entropy measure from information theory and integrates the uncertainty to the decision-making process. It is analytically proven that the proposed algorithm achieves an ϵ fraction of the full rate region that can be achieved only when full CSI is available. Numerical analysis conducted for a CDMA based cellular network operating with high data rate (HDR) protocol, demonstrate that the full rate region can be achieved our proposed algorithm by probing less than 50% of all user channels.
Journal: Computer Networks - Volume 104, 20 July 2016, Pages 43–54