کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4525295 1625625 2015 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Prerequisites for density-driven instabilities and convective mixing under broad geological CO2 storage conditions
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله
Prerequisites for density-driven instabilities and convective mixing under broad geological CO2 storage conditions
چکیده انگلیسی


• We develop an instability onset, onset time and steady convective flux-analysis tool.
• A systematic analysis of prerequisites for enhanced solubility trapping is presented.
• Indirect thermal effects on enhanced solubility trapping are non-negligible.
• Shallow storage depths favour density-driven instability onset and short onset times.
• Salinity determines the storage depth at which the largest convective fluxes occur.

Direct atmospheric greenhouse gas emissions can be greatly reduced by CO2 sequestration in deep saline aquifers. One of the most secure and important mechanisms of CO2 trapping over large time scales is solubility trapping. In addition, the CO2 dissolution rate is greatly enhanced if density-driven convective mixing occurs. We present a systematic analysis of the prerequisites for density-driven instability and convective mixing over the broad temperature, pressure, salinity and permeability conditions that are found in geological CO2 storage. The onset of instability (Rayleigh–Darcy number, Ra), the onset time of instability and the steady convective flux are comprehensively calculated using a newly developed analysis tool that accounts for the thermodynamic and salinity dependence on solutally and thermally induced density change, viscosity, molecular and thermal diffusivity. Additionally, the relative influences of field characteristics are analysed through local and global sensitivity analyses. The results help to elucidate the trends of the Ra, onset time of instability and steady convective flux under field conditions. The impacts of storage depth and basin type (geothermal gradient) are also explored and the conditions that favour or hinder enhanced solubility trapping are identified. Contrary to previous studies, we conclude that the geothermal gradient has a non-negligible effect on density-driven instability and convective mixing when considering both direct and indirect thermal effects because cold basin conditions, for instance, render higher Ra compared to warm basin conditions. We also show that the largest Ra is obtained for conditions that correspond to relatively shallow depths, measuring approximately 800 m, indicating that CO2 storage at such depths favours the onset of density-driven instability and reduces onset times. However, shallow depths do not necessarily provide conditions that generate the largest steady convective fluxes; the salinity determines the storage depth at which the largest steady convective fluxes occur. Furthermore, we present a straight-forward and efficient procedure to estimate site-specific solutal Ra that accounts for thermodynamic and salinity dependence.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Water Resources - Volume 84, October 2015, Pages 136–151
نویسندگان
, , , , ,