کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4525332 1625622 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Imaging geochemical heterogeneities using inverse reactive transport modeling: An example relevant for characterizing arsenic mobilization and distribution
ترجمه فارسی عنوان
ناهمگنی های ژئوشیمیایی تصویربرداری با استفاده از مدلسازی حمل و نقل واکنش معکوس: نمونه ای که برای تشخیص بسیج و توزیع آرسنیک مناسب است
کلمات کلیدی
ناهمگونی ژئوشیمیایی، حمل و نقل آرسنیک، کیفیت آب زیرزمینی، معکوس کردن مدل، رویکرد جغرافیایی مولفه اصلی
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
چکیده انگلیسی


• Approach to estimate the spatial distribution of reactive minerals in the subsurface.
• Multi-scale applications for As-bearing pyrite distribution using oxygen measurements.
• Computationally efficient inversion coupling flow and multi-species reactive transport.
• As-bearing pyrite distributions characterized successfully with PCGA inverse modeling.

The spatial distribution of reactive minerals in the subsurface is often a primary factor controlling the fate and transport of contaminants in groundwater systems. However, direct measurement and estimation of heterogeneously distributed minerals are often costly and difficult to obtain. While previous studies have shown the utility of using hydrologic measurements combined with inverse modeling techniques for tomography of physical properties including hydraulic conductivity, these methods have seldom been used to image reactive geochemical heterogeneities. In this study, we focus on As-bearing reactive minerals as aquifer contaminants. We use synthetic applications to demonstrate the ability of inverse modeling techniques combined with mechanistic reactive transport models to image reactive mineral lenses in the subsurface and quantify estimation error using indirect, commonly measured groundwater parameters. Specifically, we simulate the mobilization of arsenic via kinetic oxidative dissolution of As-bearing pyrite due to dissolved oxygen in the ambient groundwater, which is an important mechanism for arsenic release in groundwater both under natural conditions and engineering applications such as managed aquifer recharge and recovery operations. The modeling investigation is carried out at various scales and considers different flow-through domains including (i) a 1D lab-scale column (80 cm), (ii) a 2D lab-scale setup (60 cm × 30 cm) and (iii) a 2D field-scale domain (20 m × 4 m). In these setups, synthetic dissolved oxygen data and forward reactive transport simulations are used to image the spatial distribution of As-bearing pyrite using the Principal Component Geostatistical Approach (PCGA) for inverse modeling.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Water Resources - Volume 88, February 2016, Pages 186–197
نویسندگان
, , , , ,