کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4525638 1323782 2013 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modeling soil moisture and oxygen effects on soil biogeochemical cycles including dissimilatory nitrate reduction to ammonium (DNRA)
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله
Modeling soil moisture and oxygen effects on soil biogeochemical cycles including dissimilatory nitrate reduction to ammonium (DNRA)
چکیده انگلیسی


• Oxygen dynamics is used for limiting effects on biomass above the field capacity.
• N retention versus N losses: the role of DNRA in retaining N into the soil.
• Emissions as results of a complex interplay between aerobic and anaerobic pathways.
• Emissions depend on retention time and re-aeration capability of soils.

The emission of greenhouse gasses (GHG) from soils is controlled by biogeochemical reactions and the physical constraints on gas diffusion to the soil surface. Here we present and discuss a mathematical model that couples oxygen and soil water dynamics to biochemical reactions and gas transport to explore the major drivers of trace gas emission at daily time scale in unsaturated soils. The model accounts for trace gas emissions (CO2, and N2O from nitrification and denitrification), as well as for the competition for nitrate by denitrification and dissimilatory reduction of nitrate to ammonium (DNRA). Our results indicate that explicit modeling of oxygen dynamics is important when re-aeration is limited, such as under wet conditions, in particular for fine-textured soils. The balance of labile substrate, oxygen, and water availabilities explain the observed peaks in GHG emissions at moisture values around the soil field capacity. The timing of these peaks during a dry-down is delayed in fine-textured soils, due to the slower drying and limited gas exchange rates. In addition, N2O emissions may be limited by DNRA at high soil moisture.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Water Resources - Volume 62, Part A, December 2013, Pages 106–124
نویسندگان
, , , ,