کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4525737 | 1625654 | 2013 | 17 صفحه PDF | دانلود رایگان |

Local scour of the streambed around three models of stream restoration rock structures, including a rock vane, a cross vane, and a J-hook vane, is investigated via laboratory experiments and numerical simulations. In the experimental study, a physical model of each rock structure is constructed via an assembly of rocks and installed in a straight mobile sand bed flume. Continuous bed topography measurements provide insight into the time evolution of the scour patterns downstream of the structures and yield comprehensive data sets for validating the numerical simulations in terms of scour patterns, maximum scour depths, and bar migration dynamics. The numerical simulations are carried out using the coupled, hydro-morphodynamic Curvilinear Immersed Boundary (CURVIB) method of Khosronejad et al. (2011) [17]. The mobile channel bed and the individual rocks comprising a stream restoration structure are discretized with an unstructured triangular mesh and treated as sharp-interface immersed boundaries embedded in the background curvilinear mesh used to discretize the flow domain. For each case, simulations are carried out solving both the unsteady Reynolds-averaged Navier–Stokes (URANS) equations closed with the k–ω model and filtered Large-Eddy Simulation (LES) equations closed with the dynamic Smagorinski subgrid scale model. Both the URANS and LES models yield flow and scour patterns in reasonable agreement with the measurements with the LES results being consistently in better overall agreement with the measurements. To our knowledge, the present study is the first attempt to simulate local scour patterns around realistic model of stream restoration rock structures by taking into account and directly modeling their arbitrarily complex geometrical features.
► Investigate the predictive capability of URANS and LES hydro- and morpho-dynamic model.
► Numerical simulations of scour around real-life stream restoration structures.
► Laboratory experiments for model validation.
► LES is shown to yield better predictions compared to URANS on the same grid size.
Journal: Advances in Water Resources - Volume 54, April 2013, Pages 191–207