کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4526255 1323824 2011 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Characterizing parameter sensitivity and uncertainty for a snow model across hydroclimatic regimes
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله
Characterizing parameter sensitivity and uncertainty for a snow model across hydroclimatic regimes
چکیده انگلیسی

The National Weather Service (NWS) uses the SNOW17 model to forecast snow accumulation and ablation processes in snow-dominated watersheds nationwide. Successful application of the SNOW17 relies heavily on site-specific estimation of model parameters. The current study undertakes a comprehensive sensitivity and uncertainty analysis of SNOW17 model parameters using forcing and snow water equivalent (SWE) data from 12 sites with differing meteorological and geographic characteristics. The Generalized Sensitivity Analysis and the recently developed Differential Evolution Adaptive Metropolis (DREAM) algorithm are utilized to explore the parameter space and assess model parametric and predictive uncertainty. Results indicate that SNOW17 parameter sensitivity and uncertainty generally varies between sites. Of the six hydroclimatic characteristics studied, only air temperature shows strong correlation with the sensitivity and uncertainty ranges of two parameters, while precipitation is highly correlated with the uncertainty of one parameter. Posterior marginal distributions of two parameters are also shown to be site-dependent in terms of distribution type. The SNOW17 prediction ensembles generated by the DREAM-derived posterior parameter sets contain most of the observed SWE. The proposed uncertainty analysis provides posterior parameter information on parameter uncertainty and distribution types that can serve as a foundation for a data assimilation framework for hydrologic models.

Research highlights
► Comprehensive sensitivity and uncertainty analysis method is proposed for a snow model.
► Method is robust in providing improved (single-valued and ensemble) SWE simulations.
► Mass-related model parameters are generally sensitive at all sites.
► Inter-correlation among posterior parameters is generally insignificant.
► Marginal distribution of posterior parameters varies with sites.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Water Resources - Volume 34, Issue 1, January 2011, Pages 114–127
نویسندگان
, , , , ,