کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4526332 1323829 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Input variable selection for water resources systems using a modified minimum redundancy maximum relevance (mMRMR) algorithm
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله
Input variable selection for water resources systems using a modified minimum redundancy maximum relevance (mMRMR) algorithm
چکیده انگلیسی

Input variable selection (IVS) is a necessary step in modeling water resources systems. Neglecting this step may lead to unnecessary model complexity and reduced model accuracy. In this paper, we apply the minimum redundancy maximum relevance (MRMR) algorithm to identifying the most relevant set of inputs in modeling a water resources system. We further introduce two modified versions of the MRMR algorithm (α-MRMR and β-MRMR), where α and β are correction factors that are found to increase and decrease as a power-law function, respectively, with the progress of the input selection algorithms and the increase of the number of selected input variables. We apply the proposed algorithms to 22 reservoirs in California to predict daily releases based on a set from a 121 potential input variables. Results indicate that the two proposed algorithms are good measures of model inputs as reflected in enhanced model performance. The α-MRMR and β-MRMR values exhibit strong negative correlation to model performance as depicted in lower root-mean-square-error (RMSE) values.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Water Resources - Volume 32, Issue 4, April 2009, Pages 582–593
نویسندگان
, ,