کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4526753 1323857 2007 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A diversified multiobjective GA for optimizing reservoir rule curves
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله
A diversified multiobjective GA for optimizing reservoir rule curves
چکیده انگلیسی

The paper develops an efficient macro-evolutionary multiobjective genetic algorithm (MMGA) for optimizing the rule curves of a multi-purpose reservoir system in Taiwan. Macro-evolution is a new kind of high-level species evolution that can avoid premature convergence that may arise during the selection process of conventional GAs. MMGA enriches the capabilities of GA to handle multiobjective problems by diversifying the solution set. Simulation results using a benchmark test problem indicate that the proposed MMGA yields better-spread solutions and converges closer to the true Pareto frontier than the nondominated sorting genetic algorithm-II (NSGA-II). When applied to a real case study, MMGA is able to generate uniformly spread solutions for a two-objective problem involving water supply and hydropower generation. Results of this work indicate that the proposed MMGA is highly competitive and provides a viable alternative to solve multiobjective optimization problems for water resources planning and management.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Water Resources - Volume 30, Issue 5, May 2007, Pages 1082–1093
نویسندگان
, , ,