کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4526853 | 1323861 | 2007 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Local discontinuous Galerkin approximations to Richards' equation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We consider the numerical approximation to Richards' equation because of its hydrological significance and intrinsic merit as a nonlinear parabolic model that admits sharp fronts in space and time that pose a special challenge to conventional numerical methods. We combine a robust and established variable order, variable step-size backward difference method for time integration with an evolving spatial discretization approach based upon the local discontinuous Galerkin (LDG) method. We formulate the approximation using a method of lines approach to uncouple the time integration from the spatial discretization. The spatial discretization is formulated as a set of four differential algebraic equations, which includes a mass conservation constraint. We demonstrate how this system of equations can be reduced to the solution of a single coupled unknown in space and time and a series of local constraint equations. We examine a variety of approximations at discontinuous element boundaries, permeability approximations, and numerical quadrature schemes. We demonstrate an optimal rate of convergence for smooth problems, and compare accuracy and efficiency for a wide variety of approaches applied to a set of common test problems. We obtain robust and efficient results that improve upon existing methods, and we recommend a future path that should yield significant additional improvements.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Water Resources - Volume 30, Issue 3, March 2007, Pages 555-575
Journal: Advances in Water Resources - Volume 30, Issue 3, March 2007, Pages 555-575
نویسندگان
H. Li, M.W. Farthing, C.N. Dawson, C.T. Miller,