کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4526887 | 1625675 | 2007 | 15 صفحه PDF | دانلود رایگان |

A substantial research effort has been aimed at elucidating the role of various physical, chemical and biological factors on microbial transport and removal in natural subsurface environments. The major motivation of such studies is an enhanced mechanistic understanding of these processes for development of improved mathematical models of microbial transport and fate. In this review, traditional modeling approaches used to predict the migration and removal of microorganisms (e.g., viruses, bacteria, and protozoa) in saturated porous media are systematically evaluated. A number of these methods have inherent weaknesses or inconsistencies which are often overlooked or misunderstood in actual application. Some limitations of modeling methods reviewed here include the inappropriate use of the equilibrium adsorption approach, the observed breakdown of classical filtration theory, the inability of existing theories to predict microbial attachment rates, and omission of physical straining and microbe detachment. These and other issues are considered with an emphasis on current research developments. Finally, recently proposed improvements to the most commonly used filtration model are discussed, with particular consideration of straining and microbe motility.
Journal: Advances in Water Resources - Volume 30, Issues 6–7, June–July 2007, Pages 1455–1469