کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4527075 | 1323884 | 2006 | 12 صفحه PDF | دانلود رایگان |

Studies of NAPL dissolution in porous media have demonstrated that measurement of saturation alone is insufficient to describe the rate of dissolution. Quantification of the NAPL–water interfacial area provides a measure of the expected area available for mass transfer and will likely be a primary determinant of NAPL removal efficiency. To measure the interfacial area, we have used a synchrotron-based CMT technique to obtain high-resolution 3D images of flow in a Soltrol–water–glass bead system. The interfacial area is found to increase as the wetting phase saturation decreases, reach a maximum, and then decrease as the wetting phase saturation goes to zero. These results are compared to previous findings for an air–water–glass bead study; The Soltrol–water interfacial areas were found to peak at similar saturations as those measured for the air–water system (20–35% saturation range), however, the peak values were in some cases almost twice as high for the oil-water system. We believe that the observed differences between the air–water and oil–water systems to a large degree can be explained by the differences in interfacial tensions for the two systems.
Journal: Advances in Water Resources - Volume 29, Issue 2, February 2006, Pages 227–238