کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4528520 1324312 2009 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Energy fluxes and driving forces for photosynthesis in Lemna minor exposed to herbicides
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم آبزیان
پیش نمایش صفحه اول مقاله
Energy fluxes and driving forces for photosynthesis in Lemna minor exposed to herbicides
چکیده انگلیسی

Analysis of fast chlorophyll fluorescence rise OJIP was carried out to assess the impact of diuron, paraquat and flazasulfuron on energy fluxes and driving forces for photosynthesis in Lemna minor. Results showed that diuron and paraquat treatment produced major changes in electron transport in active reaction centres (RCs). However, diuron had a more pronounced effect on the yield of electron transport per trapped exciton (ψ0) than on the yield of primary electron transport (φP0)(φP0) showing that dark reactions are more sensitive to diuron than light-dependent reactions. In contrast, paraquat treatment effects were not due to a target-specific action on those dark and light reactions. Paraquat also induced a marked surge in the total absorption of photosystem II (PSII) antenna chlorophyll per active RC displaying a large increase of the dissipation of excess energy through non-photochemical pathways (thermal dissipation processes). Flazasulfuron induced a slight decrease of both the total driving force for photosynthesis and the quantum yield of electron transport beyond QA− combined to a small but significant increase of the non-photochemical energy dissipation per RC (DI0/RC). We conclude that energy fluxes and driving force for photosynthesis generate useful information about the behaviour of aquatic plant photosystems helping to localize different target sites and to distinguish heterogeneities inside the PSII complexes. Regardless of the active molecule tested, the DFABS, φE0φE0, DI0/RC and/or ET0/RC parameters indicated a significant variation compared to control while φP0φP0 (FV/FM) showed no significant inhibition suggesting that those parameters are more sensitive for identifying a plant’s energy-use efficiency than the maximum quantum yield of primary PS II photochemistry alone.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Aquatic Botany - Volume 90, Issue 2, February 2009, Pages 172–178
نویسندگان
, , , , ,