کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4547478 1627111 2008 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Distribution and variability of redox zones controlling spatial variability of arsenic in the Mississippi River Valley alluvial aquifer, southeastern Arkansas
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله
Distribution and variability of redox zones controlling spatial variability of arsenic in the Mississippi River Valley alluvial aquifer, southeastern Arkansas
چکیده انگلیسی

Twenty one of 118 irrigation water wells in the shallow (25–30 m thick) Mississippi River Valley alluvial aquifer in the Bayou Bartholomew watershed, southeastern Arkansas had arsenic (As) concentrations (< 0.5 to 77 µg/L) exceeding 10 µg/L. Sediment and groundwater samples were collected and analyzed from the sites of the highest, median, and lowest concentrations of As in groundwater in the alluvial aquifers located at Jefferson County, Arkansas. A traditional five-step sequential extraction was performed to differentiate the exchangeable, carbonate, amorphous Fe and Mn oxide, organic, and hot HNO3-leachable fraction of As and other compounds in sediments. The Chao reagent (0.25 M hydroxylamine hydrochloride in 0.25 M HCl) removes amorphous Fe and Mn oxides and oxyhydroxides (present as coatings on grains and amorphous minerals) by reductive dissolution and is a measure of reducible Fe and Mn in sediments. The hot HNO3 extraction removes mostly crystalline metal oxides and all other labile forms of As. Significant total As (20%) is complexed with amorphous Fe and Mn oxides in sediments. Arsenic abundance is not significant in carbonates or organic matter. Significant (40–70 µg/kg) exchangeable As is only present at shallow depth (0–1 m below ground surface). Arsenic is positively correlated to Fe extracted by Chao reagent (r = 0.83) and hot HNO3 (r = 0.85). Arsenic extracted by Chao reagent decreases significantly with depth as compared to As extracted by hot HNO3. Fe (II)/Fe (the ratio of Fe concentration in the extracts of Chao reagent and hot HNO3) is positively correlated (r = 0.76) to As extracted from Chao reagent. Although Fe (II)/Fe increases with depth, the relative abundance of reducible Fe decreases noticeably with depth. The amount of reducible Fe, as well as As complexed to amorphous Fe and Mn oxides and oxyhydroxides decreases with depth. Possible explanations for the decrease in reducible Fe and its complexed As with depth include historic flushing of As and Fe from hydrous ferric oxides (HFO) by microbially-mediated reductive dissolution and aging of HFO to crystalline phases. Hydrogeochemical data suggests that the groundwater in the area falls in the mildly reducing (suboxic) to relatively highly reducing (anoxic) zone, and points to reductive dissolution of HFO as the dominant As release mechanism. Spatial variability of gypsum solubility and simultaneous SO42− reduction with co-precipitation of As and sulfide is an important limiting process controlling the concentration of As in groundwater in the area.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Contaminant Hydrology - Volume 99, Issues 1–4, 29 July 2008, Pages 49–67
نویسندگان
, , , , , , ,