کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4547523 1627119 2007 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effect of water-table fluctuation on dissolution and biodegradation of a multi-component, light nonaqueous-phase liquid
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله
Effect of water-table fluctuation on dissolution and biodegradation of a multi-component, light nonaqueous-phase liquid
چکیده انگلیسی

Light nonaqueous-phase liquids (LNAPLs) such as gasoline and diesel fuel are among the most common causes of soil and groundwater contamination. Dissolution and subsequent advective transport of LNAPL components can negatively impact water supplies, while biodegradation is thought to be an important sink for this class of contaminants. We present a laboratory investigation of the effect of a water-table fluctuation on dissolution and biodegradation of a multi-component LNAPL (85% hexadecane, 5% toluene, 5% ethylbenzene, and 5% 2-methylnapthalene on a molar basis) in a pair of similar model aquifers (80 cm × 50 cm × 3 cm), one of which was subjected to a water-table fluctuation. Water-table fluctuation resulted in LNAPL and air entrapment below the water table, an increase in the vertical extent of the LNAPL source zone (by factor 6.7), and an increase in the volume of water passing through the source zone (by factor ∼ 18). Effluent concentrations of dissolved LNAPL components were substantially higher and those of dissolved nitrate lower in the model aquifer where a fluctuation had been induced. Thus, water-table fluctuation led to enhanced biodegradation activity (28.3 mmol of nitrate consumed compared to 16.3 mmol in the model without fluctuation) as well as enhanced dissolution of LNAPL components. Despite the increased biodegradation, fluctuation led to increased elution of dissolved LNAPL components from the system (by factors 10–20). Hence, water-table fluctuations in LNAPL-contaminated aquifers might be expected to result in increased exposure of downgradient receptors to LNAPL components. Accordingly, water-table fluctuations in contaminated aquifers are probably undesirable unless the LNAPL is of minimal solubility or the dissolved-phase plume is not expected to reach a receptor due to distance or the presence of some form of containment.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Contaminant Hydrology - Volume 94, Issues 3–4, 7 December 2007, Pages 235–248
نویسندگان
, , ,