کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
456638 695762 2006 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
RT-UNNID: A practical solution to real-time network-based intrusion detection using unsupervised neural networks
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر شبکه های کامپیوتری و ارتباطات
پیش نمایش صفحه اول مقاله
RT-UNNID: A practical solution to real-time network-based intrusion detection using unsupervised neural networks
چکیده انگلیسی

With the growing rate of network attacks, intelligent methods for detecting new attacks have attracted increasing interest. The RT-UNNID system, introduced in this paper, is one such system, capable of intelligent real-time intrusion detection using unsupervised neural networks. Unsupervised neural nets can improve their analysis of new data over time without retraining. In previous work, we evaluated Adaptive Resonance Theory (ART) and Self-Organizing Map (SOM) neural networks using offline data. In this paper, we present a real-time solution using unsupervised neural nets to detect known and new attacks in network traffic. We evaluated our approach using 27 types of attack, and observed 97% precision using ART nets, and 95% precision using SOM nets.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Security - Volume 25, Issue 6, September 2006, Pages 459–468
نویسندگان
, , ,