کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4568477 | 1628869 | 2009 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Assessing Rosa persica genetic diversity using amplified fragment length polymorphisms analysis
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم کشاورزی و بیولوژیک
دانش باغداری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The genetic diversity among 128 Iranian Rosa persica (R. persica) accessions in the different populations was analyzed. Amplified fragment length polymorphisms (AFLP) technique was used to produce 171 polymorphic fragments. The number of polymorphic loci ranged from 101 to 147 and the polymorphism information content (PIC) varied from 0.289 to 0.073, with an average of 0.16. This shows extreme variability and genetic diversity among the studied R. persica populations. An indirect estimate of the number of migrants per generation (Nm = 0.376) indicated that gene flow was relatively low among populations of the species. Cluster analysis using the UPGMA method grouped all accessions into six clusters. The results did not show relative agreement with the genotypes' region of origin. Based on an analysis of molecular variance, 48% of the genetic variation of R. persica was within population and 52% was among populations. The present analysis revealed that Iranian R. persica genotypes are highly variable and genetically distinct from their origins. The apparent unique nature of the R. persica genotypes revealed by our results supports the case for the implementation of more intense characterization and conservation strategies, and provides useful information to address breeding programmes and germplasm resource management in Rosa spp.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Scientia Horticulturae - Volume 120, Issue 4, 19 May 2009, Pages 538-543
Journal: Scientia Horticulturae - Volume 120, Issue 4, 19 May 2009, Pages 538-543
نویسندگان
T. Basaki, M. Mardi, M. Jafarkhani Kermani, S.M. Pirseyedi, M.R. Ghaffari, A. Haghnazari, P. Salehi Shanjani, P. Koobaz,