کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4584033 1630465 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Jacobian algebras with periodic module category and exponential growth
ترجمه فارسی عنوان
جبرانی ژاکوبی با دسته مدول دوره ای و رشد نمایشی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی

Recently it was proven by Geiss, Labardini-Fragoso and Schröer in [1] that every Jacobian algebra associated to a triangulation of a closed surface S with a collection of marked points M is tame and Ladkani proved in [2] these algebras are (weakly) symmetric. In this work we show that for these algebras the Auslander–Reiten translation acts 2-periodically on objects. Moreover, we show that excluding only the case of a sphere with 4 (or less) punctures, these algebras are of exponential growth. These results imply that the existing characterization of symmetric tame algebras whose non-projective indecomposable modules are Ω-periodic, has at least a missing class (see [3, Theorem 6.2] or [4]).As a consequence of the 2-periodical actions of the Auslander–Reiten translation on objects, we have that the Auslander–Reiten quiver of the generalized cluster category C(S,M)C(S,M) consists only of stable tubes of rank 1 or 2.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 449, 1 March 2016, Pages 163–174
نویسندگان
,