کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4584468 1630488 2015 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Long length functions
ترجمه فارسی عنوان
توابع طولانی مدت
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی
Let D be an integral domain satisfying ACCP. We refine the classical notion of (factorization) length by recursively defining the length of a nonzero element to be the least ordinal strictly greater than the lengths of its proper divisors. This gives a surjective function L:D⁎→L(D), where L(D), called the length of D, is the least ordinal strictly greater than the length of any nonzero element. We show that an ordinal is the length of a domain satisfying ACCP if and only if it is of the form ωβ. We give some conditions for when monoid domains, generalized power series domains, inert extensions, or localizations at splitting sets satisfy ACCP, and calculate the lengths of these domains in these cases. Finally, for each positive integer n≥2 and each ordinal μ≥n, we construct a domain D satisfying ACCP and an x∈D⁎ with L(x)=μ and l(x)=n, where l(x) denotes the number of factors in a minimum length atomic factorization of x.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 426, 15 March 2015, Pages 327-343
نویسندگان
, ,