کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4584553 1630490 2015 52 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Derivations of a parametric family of subalgebras of the Weyl algebra
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Derivations of a parametric family of subalgebras of the Weyl algebra
چکیده انگلیسی
An Ore extension over a polynomial algebra F[x] is either a quantum plane, a quantum Weyl algebra, or an infinite-dimensional unital associative algebra Ah generated by elements x,y, which satisfy yx−xy=h, where h∈F[x]. When h≠0, the algebra Ah is subalgebra of the Weyl algebra A1 and can be viewed as differential operators with polynomial coefficients. This paper determines the derivations of Ah and the Lie structure of the first Hochschild cohomology group HH1(Ah)=DerF(Ah)/InderF(Ah) of outer derivations over an arbitrary field. In characteristic 0, we show that HH1(Ah) has a unique maximal nilpotent ideal modulo which HH1(Ah) is 0 or a direct sum of simple Lie algebras that are field extensions of the one-variable Witt algebra. In positive characteristic, we obtain decomposition theorems for DerF(Ah) and HH1(Ah) and describe the structure of HH1(Ah) as a module over the center of Ah.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 424, 15 February 2015, Pages 46-97
نویسندگان
, , ,