کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4589691 1334898 2016 41 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Heat kernels, upper bounds and Hardy spaces associated to the generalized Schrödinger operators
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Heat kernels, upper bounds and Hardy spaces associated to the generalized Schrödinger operators
چکیده انگلیسی

Let L=−Δ+μL=−Δ+μ be the generalized Schrödinger operator on RnRn, n≥3n≥3, where μ≢0μ≢0 is a nonnegative Radon measure satisfying certain scale-invariant Kato conditions and doubling conditions. Based on Shen's work for the fundamental solution of LL in [23], we establish the following upper bound for semigroup kernels Kt(x,y), associated to e−tLe−tL,0≤Kt(x,y)≤Cht(x−y)e−εdμ(x,y,t), where ht(x)=(4πt)−n/2e−|x|2/(4t)ht(x)=(4πt)−n/2e−|x|2/(4t), and dμ(x,y,t)dμ(x,y,t) is some parabolic type distance function associated with μ. As a consequence,0≤Kt(x,y)≤Cht(x−y)exp⁡(−c0(1+m(x,μ)max⁡{|x−y|,t})1k0+1),where m(x,μ)m(x,μ) is some auxiliary function associated with μ  . We then study a Hardy space HL1 by means of a maximal function associated with the heat semigroup e−tLe−tL generated by −L−L to obtain its characterizations via atomic decomposition and Riesz transforms. Also the dual space BMOLBMOL of HL1 is studied in this paper.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 270, Issue 10, 15 May 2016, Pages 3709–3749
نویسندگان
, ,