کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4589793 1334908 2016 70 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Birkhoff coordinates for the Toda lattice in the limit of infinitely many particles with an application to FPU
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Birkhoff coordinates for the Toda lattice in the limit of infinitely many particles with an application to FPU
چکیده انگلیسی

In this paper we study the Birkhoff coordinates (Cartesian action angle coordinates) of the Toda lattice with periodic boundary condition in the limit where the number N   of the particles tends to infinity. We prove that the transformation introducing such coordinates maps analytically a complex ball of radius R/NαR/Nα (in discrete Sobolev-analytic norms) into a ball of radius R′/NαR′/Nα (with R,R′>0R,R′>0 independent of N  ) if and only if α≥2α≥2. Then we consider the problem of equipartition of energy in the spirit of Fermi–Pasta–Ulam. We deduce that corresponding to initial data of size R/N2R/N2, 0

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 270, Issue 5, 1 March 2016, Pages 1818–1887
نویسندگان
, ,