کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4589852 1334914 2016 36 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Von Neumann algebras of equivalence relations with nontrivial one-cohomology
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Von Neumann algebras of equivalence relations with nontrivial one-cohomology
چکیده انگلیسی

Using Popa's deformation/rigidity theory, we investigate prime decompositions of von Neumann algebras of the form L(R)L(R) for countable probability measure preserving equivalence relations RR. We show that L(R)L(R) is prime whenever RR is nonamenable, ergodic, and admits an unbounded 1-cocycle into a mixing orthogonal representation weakly contained in the regular representation. This is accomplished by constructing the Gaussian extension  R˜of  RR and subsequently an s  -malleable deformation of the inclusion L(R)⊂L(R˜). We go on to note a general obstruction to unique prime factorization, and avoiding it, we prove a unique prime factorization result for products of the form L(R1)⊗‾L(R2)⊗‾⋯⊗‾L(Rk). As a corollary, we get a unique factorization result in the equivalence relation setting for products of the form R1×R2×⋯×RkR1×R2×⋯×Rk. We finish with an application to the measure equivalence of groups.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 270, Issue 4, 15 February 2016, Pages 1501–1536
نویسندگان
,