کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4589923 | 1334919 | 2015 | 37 صفحه PDF | دانلود رایگان |

By a theorem of Gordon and Hedenmalm, φ generates a bounded composition operator on the Hilbert space H2H2 of Dirichlet series ∑nbnn−s∑nbnn−s with square-summable coefficients bnbn if and only if φ(s)=c0s+ψ(s)φ(s)=c0s+ψ(s), where c0c0 is a nonnegative integer and ψ a Dirichlet series with the following mapping properties: ψ maps the right half-plane into the half-plane Res>1/2 if c0=0c0=0 and is either identically zero or maps the right half-plane into itself if c0c0 is positive. It is shown that the n th approximation numbers of bounded composition operators on H2H2 are bounded below by a constant times rnrn for some 0
Journal: Journal of Functional Analysis - Volume 268, Issue 6, 15 March 2015, Pages 1612–1648