کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4590175 1334938 2015 61 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Uniform positivity and continuity of Lyapunov exponents for a class of C2C2 quasiperiodic Schrödinger cocycles
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Uniform positivity and continuity of Lyapunov exponents for a class of C2C2 quasiperiodic Schrödinger cocycles
چکیده انگلیسی

We show that for a class of C2C2 quasiperiodic potentials and for any fixed Diophantine   frequency, the Lyapunov exponent of the corresponding Schrödinger cocycles, as a function of energies, are uniformly positive and weakly Hölder continuous. As a corollary, we obtain that the corresponding integrated density of states is weakly Hölder continuous as well. Our approach is of purely dynamical systems, which depends on a detailed analysis of asymptotic stable and unstable directions. We also apply it to more general SL(2,R)SL(2,R) cocycles, which in turn can be applied to get uniform positivity and continuity of Lyapunov exponents around unique nondegenerate extremal points of any smooth potential, and to a certain class of C2C2 Szegő cocycles.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 268, Issue 9, 1 May 2015, Pages 2525–2585
نویسندگان
, ,