کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4590216 1334941 2014 40 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Induced representations of infinite-dimensional groups, I
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Induced representations of infinite-dimensional groups, I
چکیده انگلیسی
Induced representations IndHGS were introduced and studied by F.G. Frobenius [8] for finite groups and developed by G.W. Mackey [22,23] for locally compact groups. We generalize the Mackey construction for infinite-dimensional groups. To do this, we construct some G-quasi-invariant measures on an appropriate completion X˜=H˜\G˜ of the initial space X=H\G (since the Haar measure on G does not exist) and extend the representation S of the subgroup H to the representation S˜ of the corresponding completion H˜. Kirillov's orbit method [9] describes all irreducible unitary representations of the finite-dimensional nilpotent group Gn in terms of induced representations associated with orbits in coadjoint action of the group Gn in a dual space gn⁎ of the Lie algebra gn. The induced representation defined in such a way allows us to start to develop an analog of the orbit method for the infinite-dimensional “nilpotent” group B0Z=lim→nG2n−1 of infinite in both directions matrices.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 266, Issue 6, 15 March 2014, Pages 3395-3434
نویسندگان
,