کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4590269 1334943 2014 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Poincaré type inequalities for group measure spaces and related transportation cost inequalities
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Poincaré type inequalities for group measure spaces and related transportation cost inequalities
چکیده انگلیسی

Let G be a countable discrete group with an orthogonal representation α on a real Hilbert space H  . We prove LpLp Poincaré inequalities for the group measure space L∞(ΩH,γ)⋊GL∞(ΩH,γ)⋊G, where both the group action and the Gaussian measure space (ΩH,γ)(ΩH,γ) are associated with the representation α  . The idea of proof comes from Pisierʼs method on the boundedness of Riesz transform and Lust-Piquardʼs work on spin systems. Then we deduce a transportation type inequality from the LpLp Poincaré inequalities in the general noncommutative setting. This inequality is sharp up to a constant (in the Gaussian setting). Several applications are given, including Wiener/Rademacher chaos estimation and new examples of Rieffelʼs compact quantum metric spaces.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 266, Issue 5, 1 March 2014, Pages 3236–3264
نویسندگان
,