کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4590276 1334944 2013 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the many Dirichlet Laplacians on a non-convex polygon and their approximations by point interactions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On the many Dirichlet Laplacians on a non-convex polygon and their approximations by point interactions
چکیده انگلیسی
By Birman and Skvortsov it is known that if Ω is a planar curvilinear polygon with n non-convex corners then the Laplace operator with domain H2(Ω)∩H01(Ω) is a closed symmetric operator with deficiency indices (n,n). Here we provide a Kreĭn-type resolvent formula for any self-adjoint extensions of such an operator, i.e. for the set of self-adjoint non-Friedrichs Dirichlet Laplacians on Ω, and show that any element in this set is the norm resolvent limit of a suitable sequence of Friedrichs-Dirichlet Laplacians with n point interactions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 265, Issue 3, 1 August 2013, Pages 303-323
نویسندگان
,